Precalculus (10th Edition)

Published by Pearson
ISBN 10: 0-32197-907-9
ISBN 13: 978-0-32197-907-0

Chapter 2 - Functions and Their Graphs - 2.5 Graphing Techniques: Transformations - 2.5 Assess Your Understanding - Page 103: 13

Answer

$L$

Work Step by Step

RECALL: (1) The graph of $y=f(x-h)$ involves a horizontal shift of $|h|$ units (to the right when $h \gt 0$, to the left when $h\lt0$) of the parent function $f(x)$. (2) The graph of $y=f(x)+k$ involves a vertical shift of $|k|$ units (upward when $k \gt 0$, downward when $k\lt0$) of the parent function $f(x)$. (3) The graph of $y=a \cdot f(x-h)$ involves a vertical stretch or compression (stretch when $a\gt1$, compression when $0\lt a \lt1$) of the parent function $f(x)$. (4) The graph of $y=-f(x)$ involves a reflection about the $x$-axis of the parent function $f(x)$. The given graph looks like a V so its parent function is $f(x)=|x|$, the graph of which is a parabola that opens upward. (Refer to the attached image below for the graph of $f(x)=|x|$). The given graph shows that the graph of the parent function was shifted $2$ units to the right. Use the rules listed above to find the equation of the given graph. (1) Reflecting $f(x)=|x|$ about the $x$-axis (Rule (4) above) makes the equation of the resulting function $y=-f(x) = -|x|$. (2) Here the graph is stretched by a factor larger than $1$, which from the options given, must be $2$. Hence by Rule (3), the function becomes $y=f(x)=-2|x|$. Therefore the answer is $L$.
Small 1535440639
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.