Precalculus (10th Edition)

Published by Pearson
ISBN 10: 0-32197-907-9
ISBN 13: 978-0-32197-907-0

Chapter 13 - Counting and Probability - Chapter Review - Cumulative Review - Page 870: 9

Answer

$\{(2,-5,3)\}$

Work Step by Step

We are given the system of equations: $\begin{cases} x-2y+z=15\\ 3x+y-3z=-8\\ -2x+4y-z=-27 \end{cases}$ Use the elimination method. Multiply the first equation by 3 and add it to the second. Then add the first equation to the last equation: $\begin{cases} 3x+y-3z+3(x-2y+z)=-8+3(15)\\ -2x+4y-z+x-2y+z=-27+15 \end{cases}$ $\begin{cases} 3x+y-3z+3x-6y+3z=-8+45\\ -2x+4y-z+x-2y+z=-27+15 \end{cases}$ $\begin{cases} 6x-5y=37\\ -x+2y=-12 \end{cases}$ Multiply the second equation by 6 and add it to the first: $\begin{cases} 6x-5y=37\\ -6x+12y=-72 \end{cases}$ $6x-5y-6x+12y=37-72$ $7y=-35$ $y=-5$ Determine $x$: $-x+2y=-12$ $-x+2(-5)=-12$ $x=-10+12$ $x=2$ Determine $z$: $x-2y+z=15$ $2-2(-5)+z=15$ $12+z=15$ $z=3$ The solution set is: $\{(2,-5,3)\}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.