Precalculus (10th Edition)

Published by Pearson
ISBN 10: 0-32197-907-9
ISBN 13: 978-0-32197-907-0

Chapter 13 - Counting and Probability - Chapter Review - Cumulative Review - Page 870: 8

Answer

$\left\{\dfrac{8}{3}\right\}$

Work Step by Step

We are given the equation: $\log_2 (3x-2)+\log_2 x=4$ Use the Product Property of logarithms: $\log_2 x(3x-2)=4$ Rewrite the equation in exponential form: $x(3x-2)=2^4$ $3x^2-2x-16=0$ Solve the equation: $x=\dfrac{2\pm\sqrt{(-2)^2-4(3)(-16)}}{2(3)}=\dfrac{2\pm 14}{6}=\dfrac{1\pm 7}{3}$ $x_1=\dfrac{1-7}{3}=-2$ $x_2=\dfrac{1+7}{3}=\dfrac{8}{3}$ Check the solutions: $x=-2$ $\log_2 (3(-2)-2)+\log_2 (-2)\stackrel{?}{=}4$ The logarithms are undefined for negative values! $x=\dfrac{8}{3}$ $\log_2 \left(3\left(\dfrac{8}{3}\right)-2\right)+\log_2 \dfrac{8}{3}\stackrel{?}{=}4$ $\log_2 6+\log_2 \dfrac{8}{3}\stackrel{?}{=}4$ $\log_2 \left(6\cdot\dfrac{8}{3}\right)\stackrel{?}{=}4$ $\log_2 16\stackrel{?}{=}4$ $4=4\checkmark$ The solution set is: $\left\{\dfrac{8}{3}\right\}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.