Answer
$81x^4-432x^3+864x^2-768x+256$
Work Step by Step
We are given the expression:
$(3x-4)^4$
Expand the expression using the Binomial Theorem:
$(3x-4)^4=\binom{4}{0}(3x)^4(-4)^0+\binom{4}{1}(3x)^3(-4)^1+\binom{4}{2}(3x)^2(-4)^2+\binom{4}{3}(3x)^1(-4)^3+\binom{4}{4}(3x)^0(-4)^4$
$=81x^4-4(27)x^3(4)+6(9)x^2(16)-4(3)x(64)+256$
$=81x^4-432x^3+864x^2-768x+256$