Functions Modeling Change: A Preparation for Calculus, 5th Edition

Published by Wiley
ISBN 10: 1118583191
ISBN 13: 978-1-11858-319-7

Chapter 9 - Trigonometric Identities, Models, and Complex Numbers - 9.6 Complex Numbers and De Moivre's Theorem - Exercises and Problems for Section 9.6 - Exercises and Problems - Page 392: 11

Answer

$-\frac{1 }{2} +i \frac{\sqrt 3 }{2}$

Work Step by Step

Step 1: Simplify using exponent rule $(a^n)^m=a^{n\times m}$ $\left(e^{\frac{i\pi}{3}}\right)^2=e^{\frac{2\pi i}{3}}$ Step 2: Write polar form $z=re^{i\theta}$ to find values of $r$ and $\theta$: $z=re^{i\theta}=1e^{\frac{2\pi i}{3}} \Rightarrow ~~ r=1 ~,~\theta=\frac{2\pi }{3}$ Step 3: Use Euler formula: $z=re^{i\theta}= r(\cos \theta +i \sin \theta)$ to write in Cartesian form $$1e^{\frac{2\pi i}{3}}= 1\left(\cos \frac{2\pi }{3} +i \sin \frac{2\pi }{3}\right) $$ Simplify $$\left(e^{\frac{\pi i}{3}}\right)^2= \frac{-1 }{2} +i \frac{\sqrt 3 }{2} $$ Step 4: The Cartesian form of $\left(e^{\frac{i\pi}{3}}\right)^2$ is $-\frac{1 }{2} +i \frac{\sqrt 3 }{2}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.