Functions Modeling Change: A Preparation for Calculus, 5th Edition

Published by Wiley
ISBN 10: 1118583191
ISBN 13: 978-1-11858-319-7

Chapter 4 - Exponential Functions - Review Exercises and Problems for Chapter Four - Page 177: 32

Answer

$f(t)=26-0.8 t$ $g(t)=30.4432 \cdot(0.9371)^t$

Work Step by Step

i) Let $f(t)=b+m t$, where $m$, the slope, is given by: $$ m=\frac{\Delta f}{\Delta t}=\frac{f(25)-f(5)}{25-5}=\frac{6-22}{20}=-0.8 . $$ and $$ \begin{aligned} f(5) & =b-(0.8) 5 \\ b & =f(5)+(0.8) 5=22+(0.8) 5=26 \end{aligned} $$ Hence $$f(t)=26-0.8 t$$ ii) Let $g(t)=a b^t$. We know from the graph that $g(5)=a b^{5}=22$ and $g(25)=a b^{25}=6$. So $$ \begin{aligned} \frac{a b^{25}}{a b^{5}} & =\frac{6}{22} \\ b^{20} & =\frac{6}{22} \\ b & =\left(\frac{6}{22}\right)^{1 / 20}\approx 0.9371 \end{aligned} $$ and $$ \begin{aligned} & a b^{5}=22 \\ & a=b^{-5}\cdot 22 \\ &=\frac{22}{0.9371^5} \\ & =30.4432 \end{aligned} $$ Hence $$g(t)= 30.4432\cdot\left(0.9371\right)^t$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.