Functions Modeling Change: A Preparation for Calculus, 5th Edition

Published by Wiley
ISBN 10: 1118583191
ISBN 13: 978-1-11858-319-7

Chapter 4 - Exponential Functions - Review Exercises and Problems for Chapter Four - Page 177: 24

Answer

$ f(x)=\left(8 \cdot d^{-0.5}\right)\cdot\left( \frac{d^{0.5}}{2}\right)^x $

Work Step by Step

We want to find $f(x)=ab^x$, given $f(1)=4$ and $f(3)=d$. We now find $b$ and $a$. $$ a b^1=4 \quad \text { and } \quad a b^3=d $$ $$ \begin{aligned} &\frac{a b^3}{a b^1}=\frac{d}{4}\\ &\begin{aligned} b^2 & =\frac{d}{4} \\ b & =\frac{d^{0.5}}{2} \end{aligned} \end{aligned} $$ and $$ a b^1=4=f(1) $$ $$ \begin{aligned} a\left(\frac{d^{0.5}}{2}\right) & =4 \\ a & =\frac{8}{d^{0.5}} \end{aligned} $$ $$ \begin{aligned} f(x) & =a b^x \\ & =\left(\frac{8}{d^{0.5}}\right)\left(\frac{d^{0.5}}{2}\right)^x \\ &= \left(8 \cdot d^{-0.5}\right)\cdot\left( \frac{d^{0.5}}{2}\right)^x \end{aligned} $$ Hence $$ f(x)=\left(8 \cdot d^{-0.5}\right)\cdot\left( \frac{d^{0.5}}{2}\right)^x $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.