Functions Modeling Change: A Preparation for Calculus, 5th Edition

Published by Wiley
ISBN 10: 1118583191
ISBN 13: 978-1-11858-319-7

Chapter 4 - Exponential Functions - Review Exercises and Problems for Chapter Four - Page 177: 25

Answer

a) $f(x)=\frac{31}{8} x+\frac{49}{4}$ b) $f(x)=5\cdot (2)^x$

Work Step by Step

a) Let $f(x)=b+m x$, where $m$, the slope, is given by: $$ m=\frac{\Delta y}{\Delta x}=\frac{f(2)-f(-3)}{(2)-(-3)}=\frac{20-\frac{5}{8}}{5}=\frac{\frac{155}{8}}{5}=\frac{31}{8} $$ and $$ \begin{aligned} & 20=b+m(2) \\ & 20=b+\left(\frac{31}{8}\right)(2) \\ & 20=b+\frac{31}{4} \\ & b=20-\frac{31}{4}=\frac{49}{4} . \end{aligned} $$ Hence $$ f(x)=\frac{31}{8} x+\frac{49}{4} $$ b) Let $f(x)=a b^x$. We know that $f(2)=a b^2= 20$ and $f(-3)=a b^{-3}=\frac{5}{8}$. So $$ \begin{aligned} & \frac{f(2)}{f(-3)}=\frac{a b^2}{a b^{-3}}=\frac{20}{\frac{5}{8}} \\ & b^5=20 \cdot \frac{8}{5}=32 \\ & b=2 . \end{aligned} $$ and $f(2)=a 2^2= 20$ or $$ \begin{aligned} 20 & =a(2)^2 \\ 20 & =4 a \\ a & =5 . \end{aligned} $$ Hence $f(x)=5\cdot (2)^x$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.