Functions Modeling Change: A Preparation for Calculus, 5th Edition

Published by Wiley
ISBN 10: 1118583191
ISBN 13: 978-1-11858-319-7

Chapter 4 - Exponential Functions - 4.2 Comparing Exponential and Linear Functions - Exercises and Problems for Section 4.2 - Exercises and Problems - Page 156: 35

Answer

a) $p(x)=1154.16(1.20112)^x $ b) $\$ 1154.16$ c) $20.112\%$

Work Step by Step

a) Let $P=f(x)=a(b)^x $ for the increasing exponential function as shown in the figure. The values of $a$ and $b$ can be found from the points, $(3,2000)$ and $(8, 5000)$ . We make use of the ratio of $ f(3)=a(b)^3=2000$, and $f(8)=a(b)^8=5000$ $$ \begin{aligned} \frac{f(8)}{f(3)} & =\frac{a b^8}{a b^3}=\frac{5000}{2000} \\ b^5 & =\frac{5}{2}=2.5 \\ \left(b^5\right)^{1 / 5} & =(2.5)^{1 / 5} \\ b &\approx1.20112 . \end{aligned} $$ and $$ \begin{aligned} a\left((2.5)^{1 / 5}\right)^{3} & =2000 \\ a & =\frac{2000}{(1.20112)^3} \\ & =1154.160 . \end{aligned} $$ Hence, $p(x)=1154.16(1.20112)^x $ b) The initial balance is $\$ 1154.16$. c) $$ \begin{aligned} &b=1+r .\\ &\begin{aligned} & 1.20112=1+r \\ & 0.20112=r\\ & 20.112\%=r \end{aligned} \end{aligned} $$ The annual interest rate is $20.112\%$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.