Functions Modeling Change: A Preparation for Calculus, 5th Edition

Published by Wiley
ISBN 10: 1118583191
ISBN 13: 978-1-11858-319-7

Chapter 4 - Exponential Functions - 4.1 Introduction to the Family of Exponential Functions - Exercises and Problems for Section 4.1 - Exercises and Problems - Page 148: 61

Answer

$\frac{f(n+2)}{f(n)}= \frac{1}{2}$

Work Step by Step

First write the function in standard form. \begin{equation} \begin{aligned} f(n)&=1000\cdot 2^{-\frac{1}{4}-\frac{n}{2}}\\ &=1000\cdot 2^{-\frac{1}{4}}\cdot 2^{-\frac{n}{2}}\\ &= \frac{1000}{2^{\frac{1}{4}}}\cdot\left( \frac{1}{2^{\frac{1}{2}}}\right)^n\\ &= \frac{1000}{\sqrt{\sqrt{2}}}\cdot\left( \frac{1}{\sqrt{2}}\right)^n \end{aligned} \end{equation} Let. \begin{equation} \begin{aligned} b&=\frac{1}{\sqrt{2}}\\ &= \frac{1}{b_0}\\ a&=\frac{1000}{\sqrt{\sqrt{2}}}\\ &= \frac{1000}{\sqrt{b_0}} \end{aligned} \end{equation} Then \begin{equation} \begin{aligned} f(n)&=a\cdot b^n\\ f(n+2)&= a\cdot b^{n+2}\\ &=ab^2\cdot b^n\\ \frac{f(n+2)}{f(n)}&= \frac{ab^2\cdot b^n}{a\cdot b^n}\\ &= b^2\\ &= \left( \frac{1}{\sqrt{2}} \right)^2\\ \frac{f(n+2)}{f(n)}&= \frac{1}{2}\\ \end{aligned} \end{equation} This means that an $A_{n}$ paper is two times the size of $A_{n+2}$. For example, $A_1$ paper is equal to two times the size of $A_3$ paper.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.