Functions Modeling Change: A Preparation for Calculus, 5th Edition

Published by Wiley
ISBN 10: 1118583191
ISBN 13: 978-1-11858-319-7

Chapter 4 - Exponential Functions - 4.1 Introduction to the Family of Exponential Functions - Exercises and Problems for Section 4.1 - Exercises and Problems - Page 148: 60

Answer

$f(n) == \frac{1000}{\sqrt{\sqrt{2}}}\cdot\left( \frac{1}{\sqrt{2}}\right)^n$

Work Step by Step

\begin{equation} \begin{aligned} f(n)&=1000\cdot 2^{-\frac{1}{4}-\frac{n}{2}}\\ &=1000\cdot 2^{-\frac{1}{4}}\cdot 2^{-\frac{n}{2}}\\ &= \frac{1000}{2^{\frac{1}{4}}}\cdot\left( \frac{1}{2^{\frac{1}{2}}}\right)^n\\ &= 500\sqrt[4]8\cdot\left( \frac{1}{\sqrt{2}}\right)^n \end{aligned} \end{equation} Hence, the relationship between $a$ and $b$ of an A-series paper can be written as. \begin{equation} \begin{aligned} b&=\frac{1}{\sqrt{2}}\\ a&=\frac{1000}{\sqrt{\sqrt{2}}}\\ &= 1000\sqrt{b} \end{aligned} \end{equation}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.