Thinking Mathematically (6th Edition)

Published by Pearson
ISBN 10: 0321867327
ISBN 13: 978-0-32186-732-2

Chapter 11 - Counting Methods and Probability Theory - Chapter Summary, Review, and Test - Review Exercises - Page 760: 66



Work Step by Step

The problem asks you to find the probability of not stopping on red. You can find the answer by using the complement rules of probability. The probability that an event E will not occur is equal to 1 minus the probability that it will occur. P(not stopping on red)= 1-P(stopping on red) Three out of six of the regions are red. P(not stopping on red)= 1-3/6 Next, you have to find a common denominator. P(not stopping on red)= 6/6-3/6 P(not stopping on red)= 3/6 OR 1/2 if reduced to lowest terms.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.