Answer
$990$
Work Step by Step
Factorial Notation
$n!=n(n-1)(n-2)\cdots(3)(2)(1) $ and $0!=1 $(by definition)
It follows that $n!=n(n-1)!$
---
$11!=11(10!)=11(10)(9!)=11(10)(9)(8!)$
$(11-3)!=8!$
$\displaystyle \frac{11!}{(11-3)!}=\frac{11(10)(9)(8!)}{8!}\qquad$ ... reduce the fraction (divide with $\displaystyle \frac{8!}{8!}$)
$=11(10)(9)=990$