Discrete Mathematics with Applications 4th Edition

Published by Cengage Learning
ISBN 10: 0-49539-132-8
ISBN 13: 978-0-49539-132-6

Chapter 6 - Set Theory - Exercise Set 6.2 - Page 366: 41

Answer

See explanation

Work Step by Step

We are asked to prove the identity: \[ \bigcap_{i=1}^{n}(A \times B_i) = A \times \left( \bigcap_{i=1}^{n} B_i \right) \] for any sets \(A, B_1, B_2, \dots, B_n\), and any integer \(n \geq 1\). --- ## ✅ Goal: Prove that both sides contain exactly the same ordered pairs by showing: 1. \(\displaystyle \bigcap_{i=1}^{n}(A \times B_i) \subseteq A \times \left( \bigcap_{i=1}^{n} B_i \right)\) 2. \(\displaystyle A \times \left( \bigcap_{i=1}^{n} B_i \right) \subseteq \bigcap_{i=1}^{n}(A \times B_i)\) --- ### 🔹 Part 1: Left ⊆ Right Let \((a, b) \in \displaystyle \bigcap_{i=1}^{n}(A \times B_i)\) Then: - For **all** \(i\), \((a, b) \in A \times B_i\) - So for all \(i\): \(a \in A\), \(b \in B_i\) Since this holds for all \(i\), we conclude: - \(a \in A\) - \(b \in \bigcap_{i=1}^{n} B_i\) Thus: \[ (a, b) \in A \times \left( \bigcap_{i=1}^{n} B_i \right) \] ✅ Therefore: \[ \bigcap_{i=1}^{n}(A \times B_i) \subseteq A \times \left( \bigcap_{i=1}^{n} B_i \right) \] --- ### 🔹 Part 2: Right ⊆ Left Let \((a, b) \in A \times \left( \bigcap_{i=1}^{n} B_i \right)\) Then: - \(a \in A\) - \(b \in \bigcap_{i=1}^{n} B_i\) ⇒ \(b \in B_i\) for **all** \(i\) So for each \(i\), we have: - \(a \in A\), \(b \in B_i\) ⇒ \((a, b) \in A \times B_i\) Since this is true for all \(i\), it follows: \[ (a, b) \in \bigcap_{i=1}^{n}(A \times B_i) \] ✅ Therefore: \[ A \times \left( \bigcap_{i=1}^{n} B_i \right) \subseteq \bigcap_{i=1}^{n}(A \times B_i) \] --- ## ✅ Final Conclusion: Since both inclusions hold: \[ \boxed{ \bigcap_{i=1}^{n}(A \times B_i) = A \times \left( \bigcap_{i=1}^{n} B_i \right) } \] ✔️ Proven using an element argument.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.