Discrete Mathematics with Applications 4th Edition

Published by Cengage Learning
ISBN 10: 0-49539-132-8
ISBN 13: 978-0-49539-132-6

Chapter 6 - Set Theory - Exercise Set 6.2 - Page 366: 37

Answer

See explanation

Work Step by Step

We are asked to prove the following identity for all integers \(n \geq 1\): \[ A \cap \left( \bigcup_{i=1}^{n} B_i \right) = \bigcup_{i=1}^{n} (A \cap B_i) \] This is a standard **distributive law** of set theory. --- ## ✅ Goal: Prove both directions: 1. \(A \cap \left( \bigcup_{i=1}^{n} B_i \right) \subseteq \bigcup_{i=1}^{n} (A \cap B_i)\) 2. \(\bigcup_{i=1}^{n} (A \cap B_i) \subseteq A \cap \left( \bigcup_{i=1}^{n} B_i \right)\) --- ### 🔹 Part 1: Left ⊆ Right Let \(x \in A \cap \left( \bigcup_{i=1}^{n} B_i \right)\). Then: \(x \in A\), \(x \in \bigcup_{i=1}^{n} B_i\)  ⇒ ∃ some \(j\) (with \(1 \leq j \leq n\)) such that \(x \in B_j\) Then: \(x \in A \cap B_j\), So \(x \in \bigcup_{i=1}^{n} (A \cap B_i)\) ✅ So: \[ x \in \bigcup_{i=1}^{n} (A \cap B_i) \] Thus: \[ A \cap \left( \bigcup_{i=1}^{n} B_i \right) \subseteq \bigcup_{i=1}^{n} (A \cap B_i) \] --- ### 🔹 Part 2: Right ⊆ Left Let \(x \in \bigcup_{i=1}^{n} (A \cap B_i)\). Then: - ∃ some \(j\) such that \(x \in A \cap B_j\)  ⇒ \(x \in A\) and \(x \in B_j\) Then: - \(x \in \bigcup_{i=1}^{n} B_i\) - So \(x \in A \cap \left( \bigcup_{i=1}^{n} B_i \right)\) ✅ Thus: \[ \bigcup_{i=1}^{n} (A \cap B_i) \subseteq A \cap \left( \bigcup_{i=1}^{n} B_i \right) \] --- ### ✅ Final Conclusion: Since both inclusions hold, we conclude: \[ \boxed{ A \cap \left( \bigcup_{i=1}^{n} B_i \right) = \bigcup_{i=1}^{n} (A \cap B_i) } \] This completes the proof.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.