Discrete Mathematics with Applications 4th Edition

Published by Cengage Learning
ISBN 10: 0-49539-132-8
ISBN 13: 978-0-49539-132-6

Chapter 6 - Set Theory - Exercise Set 6.2 - Page 366: 38

Answer

See explanation

Work Step by Step

We are given the identity to prove: \[ \bigcup_{i=1}^{n}(A_i - B) = \left( \bigcup_{i=1}^{n} A_i \right) - B \] for any sets \(A_1, A_2, \ldots, A_n\) and \(B\), and integer \(n \geq 1\). --- ## ✅ Goal: Use an **element argument** to prove both sides are equal by showing: 1. \(\displaystyle \bigcup_{i=1}^{n}(A_i - B) \subseteq \left( \bigcup_{i=1}^{n} A_i \right) - B\) 2. \(\displaystyle \left( \bigcup_{i=1}^{n} A_i \right) - B \subseteq \bigcup_{i=1}^{n}(A_i - B)\) --- ### 🔹 Part 1: Left ⊆ Right Let \(x \in \displaystyle \bigcup_{i=1}^{n}(A_i - B)\). Then: - There exists some \(j\) such that \(x \in A_j - B\), - So \(x \in A_j\) and \(x \notin B\), - Then \(x \in \bigcup_{i=1}^{n} A_i\) and \(x \notin B\), - So \(x \in \left( \bigcup_{i=1}^{n} A_i \right) - B\) ✅ Therefore, \[ \bigcup_{i=1}^{n}(A_i - B) \subseteq \left( \bigcup_{i=1}^{n} A_i \right) - B \] --- ### 🔹 Part 2: Right ⊆ Left Let \(x \in \left( \bigcup_{i=1}^{n} A_i \right) - B\) Then: \(x \in \bigcup_{i=1}^{n} A_i\) and \(x \notin B\), - So there exists some \(j\) such that \(x \in A_j\), - Since \(x \notin B\), we get \(x \in A_j - B\), - So \(x \in \bigcup_{i=1}^{n}(A_i - B)\) ✅ Therefore, \[ \left( \bigcup_{i=1}^{n} A_i \right) - B \subseteq \bigcup_{i=1}^{n}(A_i - B) \] --- ### ✅ Final Conclusion: Since both inclusions hold, we conclude: \[ \boxed{ \bigcup_{i=1}^{n}(A_i - B) = \left( \bigcup_{i=1}^{n} A_i \right) - B } \] ✔️ Proven by element argument.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.