Discrete Mathematics with Applications 4th Edition

Published by Cengage Learning
ISBN 10: 0-49539-132-8
ISBN 13: 978-0-49539-132-6

Chapter 5 - Sequences, Mathematical Induction, and Recursion - Exercise Set 5.7 - Page 316: 54

Answer

**(a)** \[ \boxed{ Y_n = (E + c) \left( \frac{1 - m^n}{1 - m} \right) + m^n Y_0, \quad \text{for } n \ge 1 } \] **(b)** If \(0 < m < 1\), then \[ \boxed{ \lim_{n \to \infty} Y_n = \frac{E + c}{1 - m} } \]

Work Step by Step

### Given: - Income in period \(k\): \(Y_k\) - Consumption: \(C_k = c + m Y_{k-1}\) - Total income: \(Y_k = C_k + E = c + m Y_{k-1} + E\) So the recurrence is: \[ \boxed{Y_k = (E + c) + m Y_{k-1}}, \quad \text{for } k \ge 1 \] with initial value \(Y_0\) given. --- ### **(a) Use iteration to derive a closed-form formula for \(Y_n\)** We’ll unfold the recurrence: \[ \begin{aligned} Y_1 &= (E + c) + m Y_0 \\ Y_2 &= (E + c) + m Y_1 = (E + c) + m[(E + c) + m Y_0] = (E + c)(1 + m) + m^2 Y_0 \\ Y_3 &= (E + c) + m Y_2 = (E + c)(1 + m + m^2) + m^3 Y_0 \\ \vdots \\ Y_n &= (E + c)(1 + m + m^2 + \cdots + m^{n-1}) + m^n Y_0 \end{aligned} \] The sum \(1 + m + m^2 + \cdots + m^{n-1}\) is a geometric series: \[ \sum_{k=0}^{n-1} m^k = \frac{1 - m^n}{1 - m}, \quad \text{if } m \ne 1 \] Therefore: \[ \boxed{ Y_n = (E + c)\left(\frac{1 - m^n}{1 - m}\right) + m^n Y_0 } \] Now rewrite it to match the format requested in the problem: Let’s multiply numerator and denominator of the first term by \(m\): \[ \frac{1 - m^n}{1 - m} = \frac{m - m^{n+1}}{m(1 - m)} = \left(\frac{m^n - 1}{m - 1}\right) \] So we get: \[ \boxed{ Y_n = (E + c) \left(\frac{m^n - 1}{m - 1} \right) + m^n Y_0, \quad \text{for } n \ge 1 } \] ### **(b) Take the limit as \(n \to \infty\)** We are told to assume \(0 < m < 1\). That means: - \(\lim_{n \to \infty} m^n = 0\) Apply this to the closed-form formula: \[ Y_n = (E + c) \left( \frac{1 - m^n}{1 - m} \right) + m^n Y_0 \] Take the limit: \[ \lim_{n \to \infty} Y_n = (E + c)\left( \frac{1 - 0}{1 - m} \right) + 0 = \frac{E + c}{1 - m} \]
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.