Discrete Mathematics with Applications 4th Edition

Published by Cengage Learning
ISBN 10: 0-49539-132-8
ISBN 13: 978-0-49539-132-6

Chapter 5 - Sequences, Mathematical Induction, and Recursion - Exercise Set 5.7 - Page 315: 26

Answer

a. \[ A_{k} = 1.0025\,A_{k-1} + 200, \quad A_{0} = 1000. \] b. \[ A_{k} = 1000\,(1.0025)^k \;+\; 200\,\frac{(1.0025)^k - 1}{\,1.0025 - 1\,}. \] c. **Induction Proof:** Standard for linear recurrences (shown above). d. \(\displaystyle A_{240} \approx \$66{,}610.\) \(\displaystyle A_{480} \approx \$185{,}680.\) e. **Time to reach \$10,000:** About **42 months** (3.5 years). The exact crossing occurs near \(n \approx 42.2\) months, so in the 43rd month.

Work Step by Step

Below is a step‐by‐step solution outline. We let - \(i = 3\%\) per year be the nominal annual interest rate. - Interest is compounded **monthly**, so the monthly interest rate is \(\tfrac{i}{12} = \tfrac{0.03}{12} = 0.0025\) (i.e.\ 0.25% per month). - Let \(r = 1 + \tfrac{i}{12} = 1.0025.\) - Each month, right **after** interest is added, the person deposits an additional \$200. - \(A_n\) is the amount in the account at the end of \(n\) months. - The initial deposit (at month 0) is \$1{,}000, so \(A_0 = 1000.\) We want: a. A recurrence relation for \(A_{k}\) in terms of \(A_{k-1}\). b. An explicit (closed‐form) formula for \(A_n\). c. A brief induction proof. d. The value of the account after 20 years and after 40 years. e. The time (in years) at which the account first reaches \$10,000. --- ## (a) Recurrence Relation At the end of each month \(k\): 1. The previous amount \(A_{k-1}\) has earned one month of interest, so it becomes \(r \, A_{k-1}\). 2. Then \$200 is deposited. Hence the recurrence is \[ \boxed{A_{k} \;=\; r \, A_{k-1} \;+\; 200, \quad\text{for } k \ge 1,\quad\text{with } A_{0} = 1000.} \] where \(r = 1.0025.\) --- ## (b) Iteration to Find an Explicit Formula We can “unfold” the recurrence: \[ \begin{aligned} A_{k} &= r \, A_{k-1} + 200 \\ &= r\bigl(r \, A_{k-2} + 200\bigr) + 200 = r^2 A_{k-2} + r \cdot 200 + 200 \\ &= r^3 A_{k-3} + r^2 \cdot 200 + r \cdot 200 + 200 \\ & \;\;\vdots \\ &= r^k A_{0} \;+\; 200 \bigl(r^{k-1} + r^{k-2} + \cdots + r + 1\bigr). \end{aligned} \] Since \(A_0 = 1000\), we get \[ A_{k} = 1000\,r^{k} \;+\; 200 \sum_{j=0}^{k-1} r^{\,j}. \] The finite geometric sum is \[ \sum_{j=0}^{k-1} r^j = \frac{r^k - 1}{r - 1}. \] Thus, \[ \boxed{ A_{k} = 1000 \, r^{k} \;+\; 200 \,\frac{r^{k} - 1}{r - 1}, \quad\text{where } r = 1.0025. } \] That is our explicit formula. --- ## (c) Proof by Mathematical Induction (Sketch) **Claim:** \[ A_{k} = 1000 \, r^{k} \;+\; 200 \,\frac{r^{k} - 1}{r - 1}. \] - **Base Case** \((k=0)\). The right‐hand side for \(k=0\) gives \[ 1000\,r^0 + 200 \cdot \frac{r^0 - 1}{r - 1} = 1000 \cdot 1 + 200 \cdot \frac{1 - 1}{r - 1} = 1000 + 0 = 1000. \] This matches \(A_0 = 1000\). - **Inductive Step.** Assume it holds for some \(k\). Then for \(k+1\): \[ A_{k+1} \;=\; r \, A_k + 200 \;=\; r \Bigl[1000\,r^k + 200\,\frac{r^k - 1}{r-1}\Bigr] + 200. \] Factor out \(r^{k+1}\) and combine terms. One finds it simplifies exactly to \[ 1000\,r^{k+1} \;+\; 200\,\frac{r^{k+1} - 1}{r-1}, \] completing the induction. --- ## (d) Value After 20 and 40 Years - 1 year = 12 months, so - 20 years = 240 months, - 40 years = 480 months. Hence we compute \[ A_{240} = 1000\,r^{240} \;+\; 200\,\frac{r^{240} - 1}{r-1}, \quad A_{480} = 1000\,r^{480} \;+\; 200\,\frac{r^{480} - 1}{r-1}, \] where \(r = 1.0025\). **Numerical Approximation** (roughly): - \(r^{240} \approx (1.0025)^{240} \approx 1.81\) to 1.82. - \(r^{480} \approx (1.0025)^{480} \approx (r^{240})^2 \approx 1.81^2 \approx 3.28\) to 3.30. Putting these into the formula: 1. **After 20 years (240 months):** \[ A_{240} \approx 1000 \times 1.81 \;+\; 200 \times \frac{1.81 - 1}{0.0025}. \] That is roughly \[ 1810 \;+\; 200 \times \frac{0.81}{0.0025} \;=\; 1810 \;+\; 200 \times 324 \;=\; 1810 + 64{,}800 \;=\; 66{,}610\text{ dollars (approx)}. \] 2. **After 40 years (480 months):** \[ A_{480} \approx 1000 \times 3.28 \;+\; 200 \times \frac{3.28 - 1}{0.0025} \] \[ \approx 3280 \;+\; 200 \times \frac{2.28}{0.0025} \;=\; 3280 + 200 \times 912 \;=\; 3280 + 182{,}400 \;=\; 185{,}680\text{ dollars (approx)}. \] Exact values can be found by more precise computation, but these illustrate the magnitudes. --- ## (e) When Does the Account Reach \$10,000? We want the smallest integer \(n\) such that \(A_n \ge 10{,}000.\) Set up the equation \[ A_{n} = 1000\,r^n + 200\,\frac{r^n - 1}{r - 1} = 10{,}000. \] Combine terms. A convenient approach is to factor out \(r^n\): \[ 10{,}000 = r^n \Bigl[1000 + 200\,\tfrac{1}{r-1}\Bigr] \;-\; 200\,\tfrac{1}{r-1}, \] or, equivalently, \[ 10{,}000 + 200\,\frac{1}{r-1} = r^n \Bigl[1000 + 200\,\tfrac{1}{r-1}\Bigr]. \] But it’s often simpler just to write \[ r^n = \frac{10{,}000(r - 1) + 200}{1000(r - 1) + 200}. \] With \(r - 1 = 0.0025\), we get - Numerator = \(10{,}000 \times 0.0025 + 200 = 25 + 200 = 225.\) - Denominator = \(1000 \times 0.0025 + 200 = 2.5 + 200 = 202.5.\) Hence \[ r^n = \frac{225}{202.5} = \frac{225}{202.5} \approx 1.111111\ldots = \tfrac{10}{9}. \] Thus, \[ n = \frac{\ln\!\bigl(\tfrac{10}{9}\bigr)}{\ln(r)} = \frac{\ln(10/9)}{\ln(1.0025)}. \] Numerically, - \(\ln(10/9) \approx 0.1053605,\) - \(\ln(1.0025) \approx 0.002496\) (approximately), so \[ n \approx \frac{0.10536}{0.002496} \approx 42.2 \text{ months}. \] In years, that is about \(42.2 / 12 \approx 3.52\) years. Since \(n\) must be an integer number of months, the account first exceeds \$10,000 **during the 43rd month** (which is a bit more than 3.5 years).
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.