Answer
$104.8$ million
Work Step by Step
We can model the population growth using exponential growth. If the population \(P\) at time \(t=0\) is \(P_0 = 50\) million, and it grows at a steady rate of \(3\%\) per year, then after \(n\) years,
\[
P_n = P_0 \,\bigl(1 + 0.03\bigr)^{n} = 50 \times (1.03)^n \text{ million}.
\]
For \(n = 25\) years,
\[
P_{25} = 50 \times (1.03)^{25} \text{ million}.
\]
If you wish to approximate numerically:
\[
(1.03)^{25} \approx 2.096 \quad\Longrightarrow\quad P_{25} \approx 50 \times 2.096 = 104.8 \text{ million}.
\]