University Calculus: Early Transcendentals (3rd Edition)

Published by Pearson
ISBN 10: 0321999584
ISBN 13: 978-0-32199-958-0

Chapter 9 - Section 9.7 - Power Series - Exercises - Page 530: 4

Answer

$ a.\quad R=\displaystyle \frac{1}{3}.\ \quad $Interval of convergence:$\quad \displaystyle \frac{1}{3} \leq x \lt 1$ $b. \quad$ Interval of absolute convergence:$\displaystyle \quad \frac{1}{3} \lt x \lt 1$ $ c.\quad$ At $x=\displaystyle \frac{1}{3},\quad $ the series converges conditionally

Work Step by Step

(See text: "How to Test a Power Series for Convergence".) $\text{Step 1.} $ Use the Ratio Test to find the interval where the series converges absolutely. Ordinarily, $|x-a|\lt R\quad $ or $\quad a-R\lt x\lt a+R.$ $\begin{align*} \displaystyle \frac{u_{n+1}}{u_{n}}&=\displaystyle \frac{(3x-2)^{n+1}}{n+1}\div \frac{(3x-2)^{n}}{n}\\ &= \displaystyle \frac{n(3x-2)^{n+1}}{(n+1)(3x-2)^{n}}\\ &= \displaystyle \frac{n(3x-2)}{(n+1)}\\ \displaystyle \lim_{n\rightarrow\infty}|\frac{n(3x-2)}{(n+1)}|&\lt 1 \\ & \text{ (...the parentheses are constant in terms of n )}\\ |3x-2|\displaystyle \lim_{n\rightarrow\infty}(\frac{n}{n+1})|&\lt 1 \\ & \text{ (...the limit equals 1)}\\ |3x-2|&\lt 1 \\ -1& \lt 3x-2 \lt 1 \\ 1& \lt 3x \lt 3 \\ \displaystyle \frac{1}{3}& \lt x \lt 1 \end{align*}.$ Determine the center and radius: $a -R\lt x\lt a+R$ $\displaystyle \frac{2}{3} -\frac{1}{3}\lt x\lt \frac{2}{3} +\frac{1}{3}$ $ a=\displaystyle \frac{2}{3},\quad$ the radius is $R=\displaystyle \frac{1}{3},$ the interval of absolute convergence is $\displaystyle \frac{1}{3} \lt x \lt 1$ $\text{Step 2.} $ If the interval of absolute convergence is finite, test for convergence or divergence at each endpoint. $ x=\displaystyle \frac{1}{3}\quad \Rightarrow$ $ \displaystyle \sum_{n=1}^{\infty}\frac{(1-2)^{n}}{n}=\sum_{n=1}^{\infty}\frac{(-1)^{n}}{n} \qquad$ ... alternating harmonic series (convergent). $x=$1$\quad \Rightarrow$ $ \displaystyle \sum_{n=1}^{\infty}\frac{(3-2)^{n}}{n}=\sum_{n=1}^{\infty}\frac{1}{n} \qquad$ ... harmonic series (divergent). ... At $x=\displaystyle \frac{1}{3}$, the series is conditionally convergent the interval of convergence is $\displaystyle \frac{1}{3} \leq x \lt 1$ $\text{Step 3.} $ If the interval of absolute convergence is $a -R\lt x\lt a+R$, the series diverges for $|x-a|\gt R.$ So, $ a.\quad R=\displaystyle \frac{1}{3}.\ \quad $Interval of convergence:$\quad \displaystyle \frac{1}{3} \leq x \lt 1$ $b. \quad$ Interval of absolute convergence:$\displaystyle \quad \frac{1}{3} \lt x \lt 1$ $ c.\quad$ At $x=\displaystyle \frac{1}{3},\quad $ the series converges conditionally
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.