Answer
$\approx 56563$ years
Work Step by Step
Given: $A_0=10$ and $A=5$
The exponential growth can be written as: $A=A_0e^{kt}$ ...(1)
This implies that $5=10e^{24360k} \implies k =\dfrac{\ln 0.5}{24360}$
or, $k\approx -0.000028454$ years
Equation (1) becomes: $(0.2)(10)=10 e^{-0.000028454} t$
$\implies \dfrac{\ln (0.2)}{-0.000028454}$
or, $t\approx 56563$ years