#### Answer

The slope of the curve at $x=-2$ is $10$.

#### Work Step by Step

The slope $m$ of the tangent line of the curve $f(x)$ at $A(a,b)$ is also the slope of the curve at that point, which is calculated by $$m=\lim_{h\to0}\frac{f(a+h)-f(a)}{h}$$
$$f(x)=x^3-2x+7\hspace{1cm}x=-2$$
To calculate the slope of the curve at $x=-2$, we apply the above formula:
$$m=\lim_{h\to0}\frac{f(a+h)-f(a)}{h}$$
Here $a=x=-2$
$$m=\lim_{h\to0}\frac{f(h-2)-f(-2)}{h}$$
$$m=\lim_{h\to0}\frac{\Big((h-2)^3-2(h-2)+7\Big)-\Big((-2)^3-2(-2)+7\Big)}{h}$$
$$m=\lim_{h\to0}\frac{\Big(h^3-6h^2+12h-8-2h+4+7\Big)-\Big(-8+4+7\Big)}{h}$$
$$m=\lim_{h\to0}\frac{h^3-6h^2+10h}{h}=\lim_{h\to0}(h^2-6h+10)$$
$$m=0^2-6\times0+10=10$$