University Calculus: Early Transcendentals (3rd Edition)

Published by Pearson
ISBN 10: 0321999584
ISBN 13: 978-0-32199-958-0

Chapter 3 - Practice Exercises - Page 204: 141



Work Step by Step

We are given: $R_{1}=75$ and $R_{2}=50$ $\frac{dR_{1}}{dt}=-1$ and $\frac{dR_{2}}{dt}=0.5$ $\frac{1}{R}=\frac{1}{R_{1}}+\frac{1}{R_{2}}$ diffrentiating above with respect to t: $\frac{1}{R^2}\frac{dR}{dt}=\frac{1}{R_{1}^2}\frac{dR_{1}}{dt}+\frac{1}{R_{2}^2}\frac{dR_{2}}{dt}$ $(\frac{1}{R_{1}}+\frac{1}{R_{2}})^2\frac{dR}{dt}=\frac{1}{R_{1}^2}\frac{dR_{1}}{dt}+\frac{1}{R_{2}^2}\frac{dR_{2}}{dt}$ on putting in the values: $(\frac{1}{75}+\frac{1}{50})^2\frac{dR}{dt}=\frac{1}{75^2}(-1)+\frac{1}{50^2}(0.5)$ $(\frac{5}{150})^2\frac{dR}{dt}=\frac{1}{150^2}(0.5)$ $\frac{dR}{dt}=\frac{1}{50}$ thus,$\frac{dR}{dt}=\frac{1}{50}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.