#### Answer

$32 \pi$

#### Work Step by Step

As we know that $div F=\dfrac{\partial A}{\partial x}i+\dfrac{\partial B}{\partial y}j+\dfrac{\partial C}{\partial z}k$
Now, we have
$Flux =\iiint_{o}(2x+3) dz dy dx$
Also,
$Flux =\nabla \cdot F=\int_{0}^{2\pi}\int_{0}^{\pi}\int_{0}^{2} (2 \rho \sin \phi \cos \theta+3)(\rho^2 \sin \phi) d\rho d\phi d\theta$
This implies that
$\int_{0}^{2 \pi}(4 \pi \cos \theta +16) d\theta = 32 \pi$