Answer
$y=\dfrac{e^{-x}+c}{e^x+1}$
Work Step by Step
Here, we have $y'+(\dfrac{e^x}{1+e^x})y=-(\dfrac{e^{-x}}{1+e^x})$
The integrating factor is: $I=e^{\int (\dfrac{e^x}{1+e^x}) dx}=e^x+1$
Now, $(e^x+1) (y'+(\dfrac{e^x}{1+e^x})y)=(e^x+1) [-(\dfrac{e^{-x}}{1+e^x})]$
This implies that
$\int [(e^x+1)y]' =-\int e^{-x} dx$
$(e^x+1)y=(e^{-x})+c \implies y=\dfrac{e^{-x}+c}{e^x+1}$