Answer
$y=x [\ln x]^2 +cx$
Work Step by Step
Here, we have $y'-(\dfrac{1}{x})y=2 \ln x$
The integrating factor is: $I=e^{\int (\dfrac{-1}{x}) dx}=x^{-1}=\dfrac{1}{x}=x^{-1}$
Now, $x^{-1}[y'-(\dfrac{1}{x})y]=2(x^{-1}) \ln x$
This implies that
$\int [\dfrac{1}{x}y]' =\int (\dfrac{2}{x}) \ln x dx$
$\implies (\dfrac{1}{x}) y=[\ln x]^2 +c$
or, $(x^{-1}) y=[\ln x]^2 +c$
or, $y=x [\ln x]^2 +cx$