Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 8: Techniques of Integration - Section 8.8 - Improper Integrals - Exercises 8.8 - Page 502: 74

Answer

$\dfrac{\pi}{6}$

Work Step by Step

Use formula: $\int \dfrac{du}{u \sqrt {u^2-a^2}}=\dfrac{1}{a} \sec^{-1} (x/a)+c$ Now, $$\int_3^\infty \dfrac{dx}{x \sqrt {x^2-3^2}}=\lim\limits_{a \to 3^{+}} \int_{a}^\infty \dfrac{dx}{x \sqrt {x^2-3^2}} \\=\lim\limits_{a \to 3^{+}} \dfrac{1}{3} \sec^{-1} (x/3)]_3^\infty\\ =(1/3) (\sec^{-1} (a/3) -\sec^{-1} (1)) \\=\dfrac{1}{3} (\dfrac{\pi}{2}-0) \\ =\dfrac{\pi}{6}$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.