Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 8: Techniques of Integration - Section 8.8 - Improper Integrals - Exercises 8.8 - Page 502: 71

Answer

$\ln (2)$

Work Step by Step

$Area=\int_{0}^{\pi/2} (\sec x- \tan x) dx$ or, $= \lim\limits_{a \to \dfrac{\pi}{2}^{-}} \int_0^a (\sec x- \tan x) dx$ or, $=\lim\limits_{a \to \dfrac{\pi}{2}^{-}}[\ln |\dfrac{(\sec x+ \tan x)}{\sec x}|]_0^a$ or, $=\lim\limits_{a \to \dfrac{\pi}{2}^{-}}[\ln |1+\sin x|]_0^a$ or, $=[\ln |1+\sin x|]_0^{\pi/2}$ or, $=\ln |1+\sin ( \dfrac{\pi}{2})|-\ln |1+\sin (0)|$ or, $=\ln (2)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.