Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 8: Techniques of Integration - Practice Exercises - Page 517: 28

Answer

$$\ln \left| {\frac{{\sqrt {{e^s} + 1} - 1}}{{\sqrt {{e^s} + 1} + 1}}} \right| + C$$

Work Step by Step

$$\eqalign{ & \int {\frac{{ds}}{{\sqrt {{e^s} + 1} }}} \cr & {\text{Integrate by using the substitution method}} \cr & {\text{Let }}{u^2} = {e^s} + 1,\,\,\,\,\,\,{e^s} = {u^2} - 1,\,\,\,\,\,{e^s}ds = 2udu,\,\,\,\, \cr & \,\,\,\,\,\,\,\,\,\,\,ds = \frac{{2udu}}{{{e^s}}} = \frac{{2udu}}{{{u^2} - 1}} \cr & {\text{write the integral in terms of }}u \cr & \int {\frac{1}{{\sqrt {{e^s} + 1} }}ds} = \int {\frac{1}{{\sqrt {{u^2}} }}} \left( {\frac{{2udu}}{{{u^2} - 1}}} \right) \cr & = \int {\frac{2}{{{u^2} - 1}}} du = \int {\frac{2}{{\left( {u - 1} \right)\left( {u + 1} \right)}}} du \cr & \cr & {\text{Decompose the integrand into partial fractions}} \cr & \frac{2}{{\left( {u - 1} \right)\left( {u + 1} \right)}} = \frac{A}{{u - 1}} + \frac{B}{{u + 1}} \cr & {\text{multiply by }}\left( {u - 1} \right)\left( {u + 1} \right) \cr & 2 = A\left( {u + 1} \right) + B\left( {u - 1} \right) \cr & \,\,\,{\text{if }}u = 1,\,\, then\,\,A = 1 \cr & \,\,\,{\text{if }}u = - 1,\,\, then\,\,B = - 1 \cr & \frac{1}{{\left( {u - 1} \right)\left( {u + 1} \right)}} = \frac{A}{{u - 1}} + \frac{B}{{u + 1}} = \frac{1}{{u - 1}} - \frac{1}{{u + 1}} \cr & \cr & {\text{Then}} \cr & \int {\frac{2}{{\left( {u - 1} \right)\left( {u + 1} \right)}}du} = \int {\left( {\frac{1}{{u - 1}} - \frac{1}{{u + 1}}} \right)} du \cr & = \int {\left( {\frac{1}{{u - 1}} - \frac{1}{{u + 1}}} \right)} du \cr & {\text{integrating}} \cr & = \left( {\ln \left| {u - 1} \right| - \ln \left| {u + 1} \right|} \right) + C \cr & = \ln \left| {\frac{{u - 1}}{{u + 1}}} \right| + C \cr & \cr & {\text{Write the integral in terms of }}s,{\text{ replace }}\sqrt {{e^s} + 1} {\text{ for }}u \cr & = \ln \left| {\frac{{\sqrt {{e^s} + 1} - 1}}{{\sqrt {{e^s} + 1} + 1}}} \right| + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.