Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 7: Transcendental Functions - Section 7.6 - Inverse Trigonometric Functions - Exercises 7.6 - Page 422: 99

Answer

$\displaystyle \frac{d}{dx}$(RHS) = integrand on the LHS, so the statement is valid. See below.

Work Step by Step

Differentiate the RHS and see if it equals $\displaystyle \frac{\tan^{-1}x}{x}$ $\displaystyle \frac{d}{dx}[\ln x]=\frac{1}{x}$ $\displaystyle \frac{d}{dx}[\ln(1+x^{2})]=$ (use chain rule) $=\displaystyle \frac{1}{1+x^{2}}\cdot 2x$ $\displaystyle \frac{d}{dx}[\frac{\tan^{-1}x}{x}]$ = (use quotient rule, table 7-3) $=\displaystyle \frac{\frac{1}{1+x^{2}}\cdot x-(1)\cdot\tan^{-1}x}{x^{2}}$ $=\displaystyle \frac{x-(1+x^{2})\tan^{-1}x}{x^{2}(1+x^{2})}$ $RHS=\displaystyle \frac{1}{x}-\frac{1}{2}\cdot\frac{2x}{1+x^{2}}-\frac{x-(1+x^{2})\tan^{-1}x}{x^{2}(1+x^{2})}$ $=\displaystyle \frac{x(1+x^{2}) -x\cdot x^{2}-(x-(1+x^{2})\tan^{-1}x)}{x^{2}(1+x^{2})}$ $=\displaystyle \frac{x+x^{3} -x^{3}-x+(1+x^{2})\tan^{-1}x}{x^{2}(1+x^{2})}$ $=\displaystyle \frac{(1+x^{2})\tan^{-1}x}{x^{2}(1+x^{2})}$ $=\displaystyle \frac{\tan^{-1}x}{x}$ Since $\displaystyle \frac{d}{dx}$(RHS) = integrand on the LHS, the statement is valid.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.