Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 7: Transcendental Functions - Practice Exercises - Page 439: 21

Answer

$$\frac{{dy}}{{dz}} = \frac{{1 - z}}{{\sqrt {{z^2} - 1} }} + {\sec ^{ - 1}}z $$

Work Step by Step

$$\eqalign{ & y = z{\sec ^{ - 1}}z - \sqrt {{z^2} - 1},\,\,\,\,\,\,\,z > 1 \cr & {\text{find the derivative of }}y{\text{ with respect to }}z \cr & \frac{{dy}}{{dz}} = \frac{{d\left( {z{{\sec }^{ - 1}}z - \sqrt {{z^2} - 1} } \right)}}{{dz}} \cr & \frac{{dy}}{{dz}} = \frac{{d\left( {z{{\sec }^{ - 1}}z} \right)}}{{dz}} - \frac{{d\left( {\sqrt {{z^2} - 1} } \right)}}{{dz}} \cr & {\text{use the product rule}} \cr & \frac{{dy}}{{dz}} = z\frac{{d\left( {{{\sec }^{ - 1}}z} \right)}}{{dz}} + {\sec ^{ - 1}}z\frac{{d\left( z \right)}}{{dz}} - \frac{{d\left( {\sqrt {{z^2} - 1} } \right)}}{{dz}} \cr & {\text{use the formula }}\cr &\frac{{d\left( {{{\sec }^{ - 1}}u} \right)}}{{dx}} = \frac{1}{{\left| u \right|\sqrt {{u^2} - 1} }}\frac{{du}}{{dx}}\cr &{\text{ and the chain rule}} \cr & \frac{{dy}}{{dz}} = z\left( {\frac{1}{{\left| z \right|\sqrt {{z^2} - 1} }}} \right) + {\sec ^{ - 1}}z\left( 1 \right) - \frac{1}{2}{\left( {{z^2} - 1} \right)^{ - 1/2}}\left( {2z} \right) \cr & {\text{simplifying, we get:}} \cr & \frac{{dy}}{{dz}} = \frac{z}{{\left| z \right|\sqrt {{z^2} - 1} }} + {\sec ^{ - 1}}z - \frac{z}{{\sqrt {{z^2} - 1} }} \cr & {\text{where}}\,\,\,\,\,\,\,z > 1 \cr & \frac{{dy}}{{dz}} = \frac{1}{{\sqrt {{z^2} - 1} }} + {\sec ^{ - 1}}z - \frac{z}{{\sqrt {{z^2} - 1} }} \cr & \frac{{dy}}{{dz}} = \frac{{1 - z}}{{\sqrt {{z^2} - 1} }} + {\sec ^{ - 1}}z \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.