Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 7: Transcendental Functions - Practice Exercises - Page 439: 16

Answer

$$\frac{{dy}}{{dt}} = - \frac{1}{{2v\sqrt {v - 1} }}$$

Work Step by Step

$$\eqalign{ & y = {\sin ^{ - 1}}\left( {\frac{1}{{\sqrt v }}} \right),\,\,\,\,\,v > 1 \cr & y = {\sin ^{ - 1}}\left( {{v^{ - 1/2}}} \right) \cr & {\text{find the derivative of }}y{\text{ with respect to }}v \cr & \frac{{dy}}{{dv}} = \frac{{d\left( {{{\sin }^{ - 1}}\left( {{v^{ - 1/2}}} \right)} \right)}}{{dv}} \cr & {\text{we can use the formula }}\cr &\frac{{d\left( {{{\sin }^{ - 1}}u} \right)}}{{dt}} = \frac{1}{{\sqrt {1 - {u^2}} }}\frac{{du}}{{dt}}.\,\,\,\left( {{\text{see table 7}}{\text{.3}}} \right). \cr & {\text{here }}u = {v^{ - 1/2}}t,\,\,{\text{then}} \cr & \frac{{dy}}{{dt}} = \frac{1}{{\sqrt {1 - {{\left( {{v^{ - 1/2}}} \right)}^2}} }}\frac{{d\left( {{v^{ - 1/2}}} \right)}}{{dt}} \cr & \frac{{dy}}{{dt}} = \frac{1}{{\sqrt {1 - {{\left( {{v^{ - 1/2}}} \right)}^2}} }}\left( { - \frac{1}{2}{v^{ - 3/2}}} \right) \cr & {\text{simplifying, we get:}} \cr & \frac{{dy}}{{dt}} = \frac{1}{{\sqrt {1 - {v^{ - 1}}} }}\left( { - \frac{1}{{2{v^{3/2}}}}} \right) \cr & \frac{{dy}}{{dt}} = \frac{{{v^{1/2}}}}{{\sqrt {v - 1} }}\left( { - \frac{1}{{2{v^{3/2}}}}} \right) \cr & \frac{{dy}}{{dt}} = - \frac{1}{{2v\sqrt {v - 1} }} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.