Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 5: Integrals - Section 5.1 - Area and Estimating with Finite Sums - Exercises 5.1 - Page 257: 1

Answer

Estimating the area under the graph Since the function is increasing on [0, 1], we use left endpoints to obtain lower sums and right endpoints to obtain upper sums.

Work Step by Step

Using finite approximations to estimate the area under the graph of the function using $\text{Genera Rule:}$ Area = sum of rectangles' area under the curve The Area of a Rectangle = Width * Height Width is $\Delta x$ = $\frac{\text{final point - initial point}}{\text{number of rectangles}}$ Height is $f(x_i)$ where $x_i$ is the height at each corresponding point $i$ The difference between lower and upper sums Area (Lower Sum) = $\sum_{i=0}^{n-1} f(x) \dot\ \Delta x$ where n is the number of rectangles Area (Upper Sum) = $\sum_{i=1}^{n} f(x) \dot\ \Delta x$ where n is the number of rectangles a. a lower sum with two rectangles of equal width. $\Delta x=\frac{1-0}{2}=\frac{1}{2}\ \text{and}\ x_i = i\Delta x=\frac{i}{2}\Rightarrow\ \sum_{i=0}^{1} \Delta x \dot\ x_i^2 =\sum_{i=0}^{1} \frac{1}{2}(\frac{i}{2})^2 = \frac{1}{2}(\frac{0}{2})^2 + \frac{1}{2}(\frac{1}{2})^2=\frac{1}{2}(\frac{1}{4})=\frac{1}{8}$ b. a lower sum with four rectangles of equal width. $\Delta x=\frac{1-0}{4}=\frac{1}{4}\ \text{and}\ x_i = i\Delta x=\frac{i}{4}\Rightarrow\ \sum_{i=0}^{3} \Delta x \dot\ x_i^2 =\sum_{i=0}^{3} \frac{1}{4}(\frac{i}{4})^2 = \frac{1}{4}(\frac{0}{4})^2 + \frac{1}{4}(\frac{1}{4})^2+\frac{1}{4}(\frac{2}{4})^2+\frac{1}{4}(\frac{3}{4})^2=\frac{7}{32}$ c. an upper sum with two rectangles of equal width. $\Delta x=\frac{1-0}{2}=\frac{1}{2}\ \text{and}\ x_i = i\Delta x=\frac{i}{2}\Rightarrow\ \sum_{i=1}^{2} \Delta x \dot\ x_i^2 =\sum_{i=1}^{2} \frac{1}{2}(\frac{i}{2})^2 = \frac{1}{2}(\frac{1}{2})^2 + \frac{1}{2}(\frac{2}{2})^2=\frac{1}{2}(\frac{1}{4})+\frac{1}{2}(1)=\frac{3}{8}$ d. an upper sum with four rectangles of equal width $\Delta x=\frac{1-0}{4}=\frac{1}{4}\ \text{and}\ x_i = i\Delta x=\frac{i}{4}\Rightarrow\ \sum_{i=1}^{4} \Delta x \dot\ x_i^2 =\sum_{i=1}^{4} \frac{1}{4}(\frac{i}{4})^2 = \frac{1}{4}(\frac{1}{4})^2 + \frac{1}{4}(\frac{2}{4})^2+\frac{1}{4}(\frac{3}{4})^2+\frac{1}{4}(\frac{4}{4})^2=\frac{15}{32}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.