Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 3: Derivatives - Section 3.8 - Related Rates - Exercises 3.8 - Page 162: 15

Answer

${\dfrac{dV}{dt}}=1 {\dfrac{volt}{sec}}$; ${\dfrac{dI}{dt}}={\dfrac{-1}{3}} {\dfrac{ampere}{sec}}$; ${\dfrac{dR}{dt}}={\dfrac{1}{I}({\dfrac{dV}{dt}-{\dfrac{V}{I}{\dfrac{dI}{dt}}}})}$; and ${\dfrac{dR}{dt}}={\dfrac{3}{2}{\dfrac{ohm}{sec}}}$

Work Step by Step

a) Rate of increase in voltage is 1 volt per sec, then ${\dfrac{dV}{dt}}=1 {\dfrac{volt}{sec}}$ b) Rate of decreasing in current is given by ${\frac{dI}{dt}}={\frac{-1}{3}} {\dfrac{ampere}{sec}}$ c) Since, $V=IR$ Then $R={\dfrac{V}{I}}$ Now,${\dfrac{dR}{dt}}={\frac{I\frac{dV}{dt}-{V\frac{dI}{dt}}}{I^2}}$ ${\frac{dR}{dt}}={\frac{1}{I}({\frac{dV}{dt}-{\frac{V}{I}{\frac{dI}{dt}}}})}$ d) From above parts a, b, c, we get ${\dfrac{dR}{dt}}={\frac{1}{I}({\frac{dV}{dt}-{\frac{V}{I}{\frac{dI}{dt}}}})}={\frac{1}{2}{(1-{\frac{12}{2}{\frac{-1}{3}}})}}$ where $V=12$ volt and $I =2$ amp So, ${\dfrac{dR}{dt}}={\dfrac{3}{2}{\dfrac{ohm}{sec}}}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.