Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 2: Limits and Continuity - Section 2.3 - The Precise Definition of a Limit - Exercises 2.3 - Page 67: 52

Answer

See explanations.

Work Step by Step

Step 1. For $\lim_{x\to c}f(x)=L$ to be true, for every number $\epsilon\gt0$, there must exist a corresponding number $\delta\gt0$ such that for all $x$, $0\lt |x-c| \lt \delta$, we get $|f(x)-L|\lt\epsilon$. Step 2. The last inequality gives $-\epsilon\lt f(x)-L \lt \epsilon$ or $L-\epsilon\lt f(x) \lt L+\epsilon$ Adn the requirement for $\delta$ gives $-\delta \lt x-c \lt \delta$ or $c-\delta \lt x \lt c+\delta$ Step 3. Let $x=h+c$, we have $h=x-c$ and when $x\to c, h\to 0$ Step 4. The limit $\lim_{h\to0}f(h+c)=L$ is true if and only if for every number $\epsilon\gt0$, there exists a corresponding number $\delta\gt0$ such that for all $h$, $0\lt |h| \lt \delta$, we get $|f(h+c)-L|\lt\epsilon$. Step 5. The inequalities in step 4 lead to $-\epsilon\lt f(h+c)-L \lt \epsilon$ or $L-\epsilon\lt f(h+c) \lt L+\epsilon$ And the requirement for $\delta$ gives $-\delta \lt h \lt \delta$ Step 6. Use the relation in step 3, the above conditions become $L-\epsilon\lt f(x) \lt L+\epsilon$ and $\delta$ gives $-\delta \lt x-c \lt \delta$ or $c-\delta \lt x \lt c+\delta$ Step 7. As the conditions in step 6 is the same of the requirements in step 2, we conclude that the limit $\lim_{x\to c}f(x)=L$ is true if and only if the limit $\lim_{h\to0}f(h+c)=L$ is true.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.