Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 2: Limits and Continuity - Section 2.2 - Limit of a Function and Limit Laws - Exercises 2.2 - Page 59: 86

Answer

$8$

Work Step by Step

We have to find $\lim\limits_{{x \to 3}} \frac{x^2 - 9}{\sqrt{x^2 + 7} - 4}$ But if we put $x = 3$ we get zero in both the numerator and the denominator. To find the answer we can do the following steps: Multiply the numerator and denominator by $\sqrt{x^2 + 7} + 4$ = $\frac{x^2 - 9}{\sqrt{x^2 + 7} - 4} \times \frac{\sqrt{x^2 + 7} + 4}{\sqrt{x^2 + 7} + 4}$ = $\frac{(x^2 - 9)(\sqrt{x^2 + 7} + 4)}{(\sqrt{x^2 + 7} - 4)(\sqrt{x^2 + 7} + 4)}$ Now, we know $(a - b)(a + b) = a^2 - b^2$ So, we get: $\frac{(x^2 - 9)(\sqrt{x^2 + 7} + 4)}{(\sqrt{x^2 + 7})^2 - 4^2}$ = $\frac{(x^2 - 9)(\sqrt{x^2 + 7} + 4)}{x^2 + 7 - 16}$ = $\frac{(x^2 - 9)(\sqrt{x^2 + 7} + 4)}{x^2 - 9}$ = $\sqrt{x^2 + 7} + 4$ Now, as $\frac{x^2 - 9}{\sqrt{x^2 + 7} - 4} $ = $\sqrt{x^2 + 7} + 4$ $\lim\limits_{{x \to 3}} \frac{x^2 - 9}{\sqrt{x^2 + 7} - 4} = \lim\limits_{{x \to 3}} (\sqrt{x^2 + 7} + 4)$ Now, we can directly substitute the value of $x = 3$. Therefore, we get $\sqrt{(3)^2 + 7} + 4 = \sqrt{16} + 4 = 4 + 4 = 8$ Therefore, $\lim\limits_{{x \to 3}} \frac{x^2 - 9}{\sqrt{x^2 + 7} - 4} = 8$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.