Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 16: Integrals and Vector Fields - Section 16.5 - Surfaces and Area - Exercises 16.5 - Page 990: 46


$$\dfrac{13\pi}{3} $$

Work Step by Step

Apply cylindrical coordinates. $ x=r \cos \theta ;\\ y= r \sin \theta ;\\ z \gt 0$ We know that $ r(r, \theta)=xi+yj+zk $ or, $ r^2=x^2+y^2+z^2$ Now, $ r_r= \cos \theta \space i+\sin \theta \space j+2 \space k ;\\ r_{\theta}=-r\sin \theta \space i+ r\cos \theta \space j $ Also, $|r_r \times r_{\theta}|=r\sqrt {4r^2+1}$ $$ Area=\int_0^{2 \pi} \int_0^{\sqrt 2} (r\sqrt {4r^2+1}) \space dr \space d \theta \\=\int_0^{2 \pi} (\dfrac{1}{12}) \times ({4r^2+1})^{3/2} \space d\theta \\= \dfrac{13\pi}{3} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.