Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 16: Integrals and Vector Fields - Section 16.5 - Surfaces and Area - Exercises 16.5 - Page 990: 38


$$\dfrac{49\pi }{3}$$

Work Step by Step

Apply cylindrical coordinates. $ x=r \cos \theta ;\\ y= r \sin \theta ;\\ z \gt 0$ We know that $ r(r, \theta)=xi+yj+zk $ or, $ r^2=x^2+y^2+z^2$ We have $ x^2+y^2=z $ and $ z=r^2$ $ r_r= \cos \theta \space i+\sin \theta \space j+2 \space k ; \\r_{\theta}=-r\sin \theta \space i+ r\cos \theta \space j $. Also, $|r_r \times r_{\theta}|=r\sqrt {4r^2+1}$ Now, $$ Area=\int_0^{2 \pi} \int_\sqrt 2^{\sqrt 6} (r\sqrt {4r^2+1}) \space dr \space d \theta\\=\int_0^{2 \pi} (\dfrac{125}{12}- \dfrac{27}{12})\space d \theta \\= \space \dfrac{49\pi }{3}$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.