Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 16: Integrals and Vector Fields - Section 16.5 - Surfaces and Area - Exercises 16.5 - Page 989: 9

Answer

$ y=r(x,y)=xi+yj+(4-y^2)k ; \\-2 \le y \le 2 \\ 0 \le x \le 2$

Work Step by Step

Use spherical coordinates as: $ x= P \sin \phi \cos \theta; y=Pl \sin \phi \sin \theta; z=Pl \cos \phi $ $0 \le \phi \le \pi; \\0 \le \theta \le 2 \pi $. We know that $ r(r, \theta)=xi+yj+zk $ or, $ r^2=x^2+y^2+z^2$ We have $ z=4-y^2 ; \\ y=r(x,y)=xi+yj+zk \implies r=xi+yj+(4-y^2)k\\ z=0, 0=4-y^2 $ or, $ y =\pm 2$ Hence: $ y=r(x,y)$ or, $ y=xi+yj+(4-y^2)k ; \\-2 \le y \le 2 \\ 0 \le x \le 2$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.