Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 16: Integrals and Vector Fields - Section 16.5 - Surfaces and Area - Exercises 16.5 - Page 989: 4

Answer

$ r(r, \theta)=(r \cos \theta) i+( r\sin \theta) j+2r k $ and $1 \le r \le 2 ; 0 \le \theta \le 2 \pi $

Work Step by Step

We know that $ r(r, \theta)=xi+yj+zk $ or, $ r^2=x^2+y^2+z^2$ $ z=2\sqrt{x^2+y^2} \implies z=2 \sqrt {r^2}=2r $ Apply cylindrical coordinates. $ x=r \cos \theta ;\\ y= r \sin \theta ;\\ z \gt 0$ and $ r=(r \cos \theta) i+( r\sin \theta) j+2r k $; Also, $2 \le z \le 4 ;\\ 2 \le 2r \le 4$ or, $1 \le r \le 2$ Hence: $ r(r, \theta)=(r \cos \theta) i+( r\sin \theta) j+2r k $ and $1 \le r \le 2 ; 0 \le \theta \le 2 \pi $
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.