Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 15: Multiple Integrals - Section 15.5 - Triple Integrals in Rectangular Coordinates - Exercises 15.5 - Page 902: 43



Work Step by Step

$\int^1_0 \int^1_{}\sqrt[3] z \int^{\ln3}_0 \frac{\pi e^{2x}sin(\pi y^2)}{y^2}$ dx dy dz =$\int^1_0 \int^1_{\sqrt[3] z} \frac{4 \pi sin (\pi y^2)}{y^2}$ dy dz =$\int^1_0 \int^{y^3}_0 \frac{4\pi sin(\pi y^2)}{y^2}$ dz dy =$\int^1_0 4\pi y sin(\pi y^2)dy $ =$[-2cos(\pi y^2)]^1_0$ =$-2(-1)+2$ =4
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.