Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 15: Multiple Integrals - Section 15.2 - Double Integrals over General Regions - Exercises 15.2 - Page 883: 51



Work Step by Step

Consider $I= \int_0^{\sqrt {\ln 3}} \int_0^{2x} e^{x^2} dy dx$ or, $= \int_0^{\sqrt {\ln 3}} [ y e^{x^2}]_0^{2x} dy $ or, $= \int_0^{\sqrt {\ln 3}}2x e^{x^2} dy $ Set $a = x^2 \implies da=2x dx$ Now, $I=\int_0^{\ln 3} e^{a} da=[e^a]_0^{\ln 3}=3-1=2$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.