Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 15: Multiple Integrals - Practice Exercises - Page 934: 49


$$\overline{x}=\dfrac{3\sqrt 3}{\pi} ; \\ \overline{y}=0$$

Work Step by Step

$M=\int_{-\pi/3}^{\pi/3} \int_{0}^3 r \ dr \ d \theta \\=\dfrac{9}{2} \times \int_{-\pi/3}^{\pi/3} d \theta \\= 3 \pi$ Now, $$M_y=\int_{-\pi/3}^{\pi/3} \int_{0}^3 r^2 \cos \theta \ dr \ d \theta \\= \int_{-\pi/3}^{\pi/3} 9 \cos \theta d \theta \\= 9 \sqrt 3$$ and $M_x=0$ We have: $\overline{x}=\dfrac{3\sqrt 3}{\pi} $ and $\overline{y}=0$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.