Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 14: Partial Derivatives - Section 14.5 - Directional Derivatives and Gradient Vectors - Exercises 14.5 - Page 826: 22

Answer

$$u_{max}= \lt \dfrac{2}{3}, \dfrac{2}{3}, \dfrac{1}{3} \gt \\ u_{min}=\lt -\dfrac{2}{3}, -\dfrac{2}{3}, -\dfrac{1}{3 } \gt \\ D_u f_{max} =3 \\ D_u f_{min} =-3$$

Work Step by Step

$g_x(1, \ln 2, \dfrac{1}{2})= e^y =2 \\ g_y (1, \ln 2, \dfrac{1}{2})= xe^y = 2 \\ g_z (1, \ln 2, \dfrac{1}{2})= 2z =(2)(1/2)=1$ $u_{max}=\dfrac{\nabla g(1, \ln 2, \dfrac{1}{2}) }{|\nabla g (1, \ln 2, \dfrac{1}{2}) |}= \lt \dfrac{2}{3}, \dfrac{2}{3}, \dfrac{1}{3} \gt$ $u_{min}=- u_{max}= \lt -\dfrac{2}{3}, -\dfrac{2}{3}, -\dfrac{1}{3 } \gt$ Since, $D_u f = \nabla f \cdot u$ Now, $D_u \ f_{max} =\nabla g(1, \ln 2, \dfrac{1}{2}) \cdot u_{max} \\=\lt 2,2,1 \gt \cdot \lt \dfrac{2}{3}, \dfrac{2}{3}, \dfrac{1}{3} \gt \\=3$ $D_u f_{min} =-D_u f_{max} =-3$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.