#### Answer

Domain:
x ∈ ($-\infty$,0] ∪ [3,$\infty$)
Range:
y ∈ (-$\infty$,$\infty$)

#### Work Step by Step

Domain:
According to the question,
f(x)= √(x^2 - 3x)
Now, for f(x) to be real (x^2 - 3x) $\geq$ 0
⇒ (x)(x-3)$\geq$0
⇒ x$\geq$0 AND x$\geq$3 [ Since positive number X postive number = postive]
OR
x$\leq$0 AND x$\leq$3 [ Since negative number X negative number = positive number]
⇒ x$\geq$3 OR x$\leq$0
Therefore, x ∈ ($-\infty$,0] ∪ [3,$\infty$)
Range:
Since f(x)= √(x^2 - 3x) is any real number, the range of f(x) is (-$\infty$,$\infty$)