Multivariable Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 0-53849-787-4
ISBN 13: 978-0-53849-787-9

Chapter 15 - Multiple Integrals - 15.4 Exercises - Page 1027: 38

Answer

The average distance is $\frac{a^2}{2}$.

Work Step by Step

In polar coordinates, we have $D=\{(r,\theta)|0\leq r\leq a,0\leq \theta \leq 2\pi\}$. The distance of any point $(x,y)$ in $D$ to the origin is defined by a function $d(x,y)=x^2+y^2$. Find the area of $D$: $A=\iint_D dA=\int_0^a\int_0^{2\pi}rd\theta dr=\int_0^ar\theta ]_0^{2\pi}dr=\int_0^a2\pi r dr=\pi r^2]_0^a=a^2\pi$ Find the integral $\iint_D d(x,y)dA$: $\iint_D d(x,y) dA=\int_0^a\int_0^{2\pi} r^2\cdot rd\theta dr$ $=\int_0^a\int_0^{2\pi} r^3 d\theta dr$ $=\int_0^ar^3\theta_0^{2\pi}dr$ $=\int_0^a2\pi r^3 dr$ $=\frac{\pi r^4}{2}]_0^a$ $=\frac{a^4\pi }{2}$ Find the average distance: $\bar{d}=\frac{\iint_D d(x,y)dA}{A}=\frac{\frac{a^4\pi}{2}}{a^2\pi}=\frac{a^2}{2}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.