Multivariable Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 0-53849-787-4
ISBN 13: 978-0-53849-787-9

Chapter 15 - Multiple Integrals - 15.4 Exercises - Page 1027: 34

Answer

$\iint_D xy\sqrt{1+x^2+y^2}dA=\int_0^1 \frac{r^2\sqrt{1+r^2}}{2}dr\approx 0.2101$

Work Step by Step

$D=\{(r,\theta)|0\leq r\leq 1,0\leq \theta\leq \frac{\pi}{2}\}$ $\iint_Dxy\sqrt{1+x^2+y^2}dA=\int_0^1\int_0^{\pi/2}r\cos\theta \cdot r\sin \theta \sqrt{1+r^2}\cdot rd\theta dr$ $=\int_0^1\int_0^{\pi/2}r^2\sqrt{1+r^2}\sin\theta \cos \theta d\theta dr$ $=\int_0^1r^2\sqrt{1+r^2}\frac{\sin^2\theta}{2}]_0^{\pi/2}dr$ $=\int_0^1\frac{r^2\sqrt{1+r^2}}{2} dr$ $\approx 0.2101$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.