Multivariable Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 0-53849-787-4
ISBN 13: 978-0-53849-787-9

Chapter 15 - Multiple Integrals - 15.4 Exercises - Page 1027: 37

Answer

The average value is $\frac{2}{b-a}$.

Work Step by Step

In polar coordinates, the annular region $R$ can be written as $R=\{(r,\theta)|a\leq r\leq b,0\leq \theta\leq 2\pi\}$. Find the area of the annular region: $A=\iint_R dA=\int_a^b\int_0^{2\pi}rd\theta dr=\int_a^b 2\pi r dr=\pi r^2]_a^b=(b-a)^2\pi$ Evaluate $\iint_R f(x,y) dA$: $\iint_R f(x,y) dA=\int_a^b\int_0^{2\pi} \frac{1}{\sqrt{r^2}}\cdot rd\theta dr$ $=\int_a^b \int_0^{2\pi} d\theta dr$ $=\int_a^b2\pi dr$ $=2\pi r]_a^b$ $=2(b-a)\pi$ Find the average value of $f(x,y)$ on the annular region: $\bar{f}=\frac{\iint_R f(x,y) dA}{A}=\frac{2(b-a)\pi }{(b-a)^2\pi}=\frac{2}{b-a}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.