Multivariable Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 0-53849-787-4
ISBN 13: 978-0-53849-787-9

Chapter 11 - Infinite Sequences and Series - Exercises 11.7.1 - 11.7.9 - Page 764: 8

Answer

Divergent

Work Step by Step

Let $a_k=\frac{2^kk!}{(k+2)!}$. Simplify $\frac{a_{k+1}}{a_k}$: $\frac{a_{k+1}}{a_k}=\frac{\frac{2^{k+1}(k+1)!}{(k+3)!}}{\frac{2^kk!}{(k+2)!}}=\frac{\frac{2\cdot 2^{k}(k+1)k!}{(k+3)(k+2)!}}{\frac{2^kk!}{(k+2)!}}=\frac{2k+2}{k+3}$ Find $\lim \frac{a_{k+1}}{a_k}$: $\lim \frac{a_{k+1}}{a_k}=\lim \frac{2k+2}{k+3}=2>1$ Using the Ratio Test, the series $\sum_{k=1}^\infty \frac{2^kk!}{(k+2)!}$ is divergent.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.