Multivariable Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 0-53849-787-4
ISBN 13: 978-0-53849-787-9

Chapter 11 - Infinite Sequences and Series - Exercises 11.7.1 - 11.7.9 - Page 764: 7

Answer

Divergent

Work Step by Step

Let $f(x)=\frac{1}{x\sqrt{\ln x}}$. This function is continuous and decreasing on $[2,\infty)$. Evaluate $\int_2^\infty f(x)dx$: $\int_2^\infty \frac{1}{x\sqrt{\ln x}}dx=\int_2^\infty \frac{1}{\sqrt{\ln x}}\cdot \frac{1}{x}dx$ (Let $u=\ln x\to du=\frac{1}{x}dx$) $=\int_{\ln 2}^{\ln \infty}\frac{1}{\sqrt{u}}du$ $=2\sqrt{u}_{\ln 2}^{\ln \infty}$ $=2\cdot \sqrt{\ln \infty}-2\cdot \sqrt{\ln 2}$ $=\infty$ So, the integral is divergent. Using the Integral Test for Series, $\sum_{n=2}^\infty \frac{1}{n\sqrt{\ln n}}$ is divergent.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.